71 research outputs found

    Estimation of Optimal Parameter of Regularization of Signal Recovery

    Get PDF
    In this paper there are researched regularizing properties of discretization in a space of output signals for some linear operator equation with noisy data. The essence of proposed method is selection of discretization level which is a parameter of the regularization in this context by the principle of equality of random and deterministic components of the input signal recovering error. It is shown the method, i.e. the solution which is discrete by input signal is stable to small inaccuracies in input signal. At that in case of definite level of output signal measurements inaccuracy the recovering error of input signal is unambiguously defined by input signal sampling increment that allows to select reasonably the regularization parameter for specific criterion, for example, for definite measurements inaccuracy. Specific calculations and examples are represented in explicit form for single-dimension case but this does not restricts generality of proposed method

    Breakup of a multisoliton state of the linearly damped nonlinear Schrödinger equation

    Get PDF
    We address the breakup (splitting) of multisoliton solutions of the nonlinear Schrödinger equation (NLSE), occurring due to linear loss. Two different approaches are used for the study of the splitting process. The first one is based on the direct numerical solution of the linearly damped NLSE and the subsequent analysis of the eigenvalue drift for the associated Zakharov-Shabat spectral problem. The second one involves the multisoliton adiabatic perturbation theory applied for studying the evolution of the solution parameters, with the linear loss taken as a small perturbation. We demonstrate that in the case of strong nonadiabatic loss the evolution of the Zakharov-Shabat eigenvalues can be quite nontrivial. We also demonstrate that the multisoliton breakup can be correctly described within the framework of the adiabatic perturbation theory and can take place even due to small linear loss. Eventually we elucidate the occurrence of the splitting and its dependence on the phase mismatch between the solitons forming a two-soliton bound state

    Noise-induced signal corruption in nonlinear Fourier-based optical transmission system in the presence of discrete eigenvalues

    Get PDF
    We present the numerical analysis of the correlation properties of the amplifier spontaneous emission (ASE) noise transformed into the nonlinear Fourier (NF) domain, addressing the noise-induced corruptions in the communication systems employing the nonlinear Fourier transform (NFT) based signal processing. In our current work we deal with the orthogonal frequency division multiplexing (OFDM) modulation of a continuous NF spectrum and account for the presence of discrete (soliton) eigenvalues. This approach is aimed at extending our previous studies that referred to the modulation of continuous NF spectrum only. The effective noise covariance functions are obtained from numerical simulations for a range of propagation distances, values of discrete eigenvalue, and different effective signal power levels. We report the existence of the correlations between the continuous and discrete parts of the NF spectrum

    Contour integrals for numerical computation of discrete eigenvalues in the Zakharov–Shabat problem

    Get PDF
    We propose a novel algorithm for the numerical computation of discrete eigenvalues in the Zakharov–Shabat problem. Our approach is based on contour integrals of the nonlinear Fourier spectrum function in the complex plane of the spectral parameter. The reliability and performance of the new approach are examined in application to a single eigenvalue, multiple eigenvalues, and the degenerate breather’s multiple eigenvalue. We also study the impact of additive white Gaussian noise on the stability of numerical eigenvalues computation

    Nonlinear inverse synthesis technique for optical links with lumped amplification

    Get PDF
    The nonlinear inverse synthesis (NIS) method, in which information is encoded directly onto the continuous part of the nonlinear signal spectrum, has been proposed recently as a promising digital signal processing technique for combating fiber nonlinearity impairments. However, because the NIS method is based on the integrability property of the lossless nonlinear Schrödinger equation, the original approach can only be applied directly to optical links with ideal distributed Raman amplification. In this paper, we propose and assess a modified scheme of the NIS method, which can be used effectively in standard optical links with lumped amplifiers, such as, erbium-doped fiber amplifiers (EDFAs). The proposed scheme takes into account the average effect of the fiber loss to obtain an integrable model (lossless path-averaged model) to which the NIS technique is applicable. We found that the error between lossless pathaveraged and lossy models increases linearly with transmission distance and input power (measured in dB). We numerically demonstrate the feasibility of the proposed NIS scheme in a burst mode with orthogonal frequency division multiplexing (OFDM) transmission scheme with advanced modulation formats (e.g., QPSK, 16QAM, and 64QAM), showing a performance improvement up to 3.5 dB; these results are comparable to those achievable with multi-step per span digital backpropagation

    On the rigorous justification of b-modulation method and inclusion of discrete eigenvalues

    Get PDF
    Addressing the optical communication systems employing the nonlinear Fourier transform (NFT) for the data modulation/demodulation, we provide the explicit proof for the properties of the signals emerging in the so-called b-modulation method, the nonlinear signal modulation technique that provides the explicit control over the signal extent. Our approach ensures that the time-domain profile corresponding to the b-modulated data has a limited duration, including the cases when the bound states (discrete solitonic eigenvalues) are present. In particular, in contrast to the previous approaches, we show that it is possible to include the discrete eigenvalues with the specially chosen parameters into the b-modulation concept while keeping the signal localization property exactly

    Temporal solitonic crystals and non-Hermitian informational lattices

    Get PDF
    Clusters of temporal optical solitons—stable self-localized light pulses preserving their form during propagation—exhibit properties characteristic of that encountered in crystals. Here, we introduce the concept of temporal solitonic information crystals formed by the lattices of optical pulses with variable phases. The proposed general idea offers new approaches to optical coherent transmission technology and can be generalized to dispersion-managed and dissipative solitons as well as scaled to a variety of physical platforms from fiber optics to silicon chips. We discuss the key properties of such dynamic temporal crystals that mathematically correspond to non-Hermitian lattices and examine the types of collective mode instabilities determining the lifetime of the soliton train. This transfer of techniques and concepts from solid state physics to information theory promises a new outlook on information storage and transmission

    Nonlinear Fourier Spectrum Characterization of Time-Limited Signals

    Get PDF
    Addressing the optical communication systems employing the nonlinear Fourier transform (NFT) for the data modulation/demodulation, we provide an explicit proof for the properties of the signals emerging in the so-called bb -modulation method, the nonlinear signal modulation technique that provides explicit control over the signal extent. We present details of the procedure and related rigorous mathematical proofs addressing the case where the time-domain profile corresponding to the bb -modulated data has a limited duration, and when the bound states corresponding to specifically chosen discrete solitonic eigenvalues and norming constants, are also present. We also prove that the number of solitary modes that we can embed without violating the exact localisation of the time-domain profile, is actually infinite. Our theoretical findings are illustrated with numerical examples, where simple example waveforms are used for the bb -coefficient, demonstrating the validity of the developed approach. We also demonstrate the influence of the bound states on the noise tolerance of the b-modulated system

    Nonlinear spectral management:linearization of the lossless fiber channel

    Get PDF
    Using the integrable nonlinear Schrodinger equation (NLSE) as a channel model, we describe the application of nonlinear spectral management for effective mitigation of all nonlinear distortions induced by the fiber Kerr effect. Our approach is a modification and substantial development of the so-called eigenvalue communication idea first presented in A. Hasegawa, T. Nyu, J. Lightwave Technol. 11, 395 (1993). The key feature of the nonlinear Fourier transform (inverse scattering transform) method is that for the NLSE, any input signal can be decomposed into the so-called scattering data (nonlinear spectrum), which evolve in a trivial manner, similar to the evolution of Fourier components in linear equations. We consider here a practically important weakly nonlinear transmission regime and propose a general method of the effective encoding/modulation of the nonlinear spectrum: The machinery of our approach is based on the recursive Fourier-type integration of the input profile and, thus, can be considered for electronic or all-optical implementations. We also present a novel concept of nonlinear spectral pre-compensation, or in other terms, an effective nonlinear spectral pre-equalization. The proposed general technique is then illustrated through particular analytical results available for the transmission of a segment of the orthogonal frequency division multiplexing (OFDM) formatted pattern, and through WDM input based on Gaussian pulses. Finally, the robustness of the method against the amplifier spontaneous emission is demonstrated, and the general numerical complexity of the nonlinear spectrum usage is discussed
    corecore